Effective Mass Theorems for Nonlinear Schrödinger Equations
نویسندگان
چکیده
We consider time-dependent nonlinear Schrödinger equations subject to smooth, lattice-periodic potentials plus additional confining potentials, slowly varying on the lattice scale. After an appropriate scaling we study the homogenization limit for vanishing lattice spacing. Assuming well prepared initial data, the resulting effective dynamics is governed by a homogenized nonlinear Schrödinger equation with an effective mass tensor depending on the initially chosen Bloch eigenvalue. The given results rigorously justify the use of the effective mass formalism for the description of Bose-Einstein condensates on optical lattices.
منابع مشابه
A Remark on the Concentration Phenomenon for the L-critical Nonlinear Schrödinger Equations
We observe a link between the window size of mass concentration and the rate of explosion of the Strichartz norm by revisiting Bourgain’s mass concentration for the L2-critical nonlinear Schrödinger equations.
متن کاملSolving infinite system of nonlinear integral equations by using F-generalized Meir-Keeler condensing operators, measure of noncompactness and modified homotopy perturbation.
In this article to prove existence of solution of infinite system of nonlinear integral equations, we consider the space of solution containing all convergence sequences with a finite limit, as with a suitable norm is a Banach space. By creating a generalization of Meir-Keeler condensing operators which is named as F-generalized Meir-Keeler condensing operators and measure of noncompactness, we...
متن کاملSome Fixed Point Theorems in Generalized Metric Spaces Endowed with Vector-valued Metrics and Application in Linear and Nonlinear Matrix Equations
Let $mathcal{X}$ be a partially ordered set and $d$ be a generalized metric on $mathcal{X}$. We obtain some results in coupled and coupled coincidence of $g$-monotone functions on $mathcal{X}$, where $g$ is a function from $mathcal{X}$ into itself. Moreover, we show that a nonexpansive mapping on a partially ordered Hilbert space has a fixed point lying in the unit ball of the Hilbert space. ...
متن کاملDhage iteration method for PBVPs of nonlinear first order hybrid integro-differential equations
In this paper, author proves the algorithms for the existence as well as the approximation of solutions to a couple of periodic boundary value problems of nonlinear first order ordinary integro-differential equations using operator theoretic techniques in a partially ordered metric space. The main results rely on the Dhage iteration method embodied in the recent hybrid fixed point theorems of D...
متن کاملAbsorbing boundary conditions for solving stationary Schrödinger equations
Using pseudodifferential calculus and factorization theorems we construct a hierarchy of novel absorbing boundary conditions (ABCs) for the stationary Schrödinger equation with general (linear and nonlinear) exterior potential V (x). Doing so, we generalize the well-known quantum transmitting boundary condition of Lent and Kirkner to the case of space-dependent potential. Here, we present a bri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004